3.3.62 \(\int \frac {\sqrt {d+c^2 d x^2} (a+b \sinh ^{-1}(c x))^2}{x} \, dx\) [262]

Optimal. Leaf size=338 \[ 2 b^2 \sqrt {d+c^2 d x^2}-\frac {2 a b c x \sqrt {d+c^2 d x^2}}{\sqrt {1+c^2 x^2}}-\frac {2 b^2 c x \sqrt {d+c^2 d x^2} \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}}+\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {2 b \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}+\frac {2 b \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}+\frac {2 b^2 \sqrt {d+c^2 d x^2} \text {PolyLog}\left (3,-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {2 b^2 \sqrt {d+c^2 d x^2} \text {PolyLog}\left (3,e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}} \]

[Out]

2*b^2*(c^2*d*x^2+d)^(1/2)+(a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2)-2*a*b*c*x*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(
1/2)-2*b^2*c*x*arcsinh(c*x)*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-2*(a+b*arcsinh(c*x))^2*arctanh(c*x+(c^2*x^2+
1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-2*b*(a+b*arcsinh(c*x))*polylog(2,-c*x-(c^2*x^2+1)^(1/2))*(c^2*
d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)+2*b*(a+b*arcsinh(c*x))*polylog(2,c*x+(c^2*x^2+1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(
c^2*x^2+1)^(1/2)+2*b^2*polylog(3,-c*x-(c^2*x^2+1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)-2*b^2*polylog(3
,c*x+(c^2*x^2+1)^(1/2))*(c^2*d*x^2+d)^(1/2)/(c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 338, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 8, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {5806, 5816, 4267, 2611, 2320, 6724, 5772, 267} \begin {gather*} -\frac {2 b \sqrt {c^2 d x^2+d} \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {c^2 x^2+1}}+\frac {2 b \sqrt {c^2 d x^2+d} \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {c^2 x^2+1}}-\frac {2 a b c x \sqrt {c^2 d x^2+d}}{\sqrt {c^2 x^2+1}}+\sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {2 \sqrt {c^2 d x^2+d} \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt {c^2 x^2+1}}+\frac {2 b^2 \sqrt {c^2 d x^2+d} \text {Li}_3\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {c^2 x^2+1}}-\frac {2 b^2 \sqrt {c^2 d x^2+d} \text {Li}_3\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {c^2 x^2+1}}+2 b^2 \sqrt {c^2 d x^2+d}-\frac {2 b^2 c x \sqrt {c^2 d x^2+d} \sinh ^{-1}(c x)}{\sqrt {c^2 x^2+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2)/x,x]

[Out]

2*b^2*Sqrt[d + c^2*d*x^2] - (2*a*b*c*x*Sqrt[d + c^2*d*x^2])/Sqrt[1 + c^2*x^2] - (2*b^2*c*x*Sqrt[d + c^2*d*x^2]
*ArcSinh[c*x])/Sqrt[1 + c^2*x^2] + Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2 - (2*Sqrt[d + c^2*d*x^2]*(a + b*
ArcSinh[c*x])^2*ArcTanh[E^ArcSinh[c*x]])/Sqrt[1 + c^2*x^2] - (2*b*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])*Pol
yLog[2, -E^ArcSinh[c*x]])/Sqrt[1 + c^2*x^2] + (2*b*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])*PolyLog[2, E^ArcSi
nh[c*x]])/Sqrt[1 + c^2*x^2] + (2*b^2*Sqrt[d + c^2*d*x^2]*PolyLog[3, -E^ArcSinh[c*x]])/Sqrt[1 + c^2*x^2] - (2*b
^2*Sqrt[d + c^2*d*x^2]*PolyLog[3, E^ArcSinh[c*x]])/Sqrt[1 + c^2*x^2]

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 4267

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(Ar
cTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] + (-Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f*
fz*x)], x], x] + Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 5772

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[x*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5806

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/(f*(m + 2))), x] + (Dist[(1/(m + 2))*Simp[Sqrt[d + e*x^2]
/Sqrt[1 + c^2*x^2]], Int[(f*x)^m*((a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2]), x], x] - Dist[b*c*(n/(f*(m + 2)))
*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a,
 b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])

Rule 5816

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[(1/c^(m
 + 1))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]], Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; F
reeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[m]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{x} \, dx &=\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2+\frac {\sqrt {d+c^2 d x^2} \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{x \sqrt {1+c^2 x^2}} \, dx}{\sqrt {1+c^2 x^2}}-\frac {\left (2 b c \sqrt {d+c^2 d x^2}\right ) \int \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{\sqrt {1+c^2 x^2}}\\ &=-\frac {2 a b c x \sqrt {d+c^2 d x^2}}{\sqrt {1+c^2 x^2}}+\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2+\frac {\sqrt {d+c^2 d x^2} \text {Subst}\left (\int (a+b x)^2 \text {csch}(x) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}-\frac {\left (2 b^2 c \sqrt {d+c^2 d x^2}\right ) \int \sinh ^{-1}(c x) \, dx}{\sqrt {1+c^2 x^2}}\\ &=-\frac {2 a b c x \sqrt {d+c^2 d x^2}}{\sqrt {1+c^2 x^2}}-\frac {2 b^2 c x \sqrt {d+c^2 d x^2} \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}}+\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {\left (2 b \sqrt {d+c^2 d x^2}\right ) \text {Subst}\left (\int (a+b x) \log \left (1-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}+\frac {\left (2 b \sqrt {d+c^2 d x^2}\right ) \text {Subst}\left (\int (a+b x) \log \left (1+e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}+\frac {\left (2 b^2 c^2 \sqrt {d+c^2 d x^2}\right ) \int \frac {x}{\sqrt {1+c^2 x^2}} \, dx}{\sqrt {1+c^2 x^2}}\\ &=2 b^2 \sqrt {d+c^2 d x^2}-\frac {2 a b c x \sqrt {d+c^2 d x^2}}{\sqrt {1+c^2 x^2}}-\frac {2 b^2 c x \sqrt {d+c^2 d x^2} \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}}+\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {2 b \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}+\frac {2 b \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}+\frac {\left (2 b^2 \sqrt {d+c^2 d x^2}\right ) \text {Subst}\left (\int \text {Li}_2\left (-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}-\frac {\left (2 b^2 \sqrt {d+c^2 d x^2}\right ) \text {Subst}\left (\int \text {Li}_2\left (e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{\sqrt {1+c^2 x^2}}\\ &=2 b^2 \sqrt {d+c^2 d x^2}-\frac {2 a b c x \sqrt {d+c^2 d x^2}}{\sqrt {1+c^2 x^2}}-\frac {2 b^2 c x \sqrt {d+c^2 d x^2} \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}}+\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {2 b \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}+\frac {2 b \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}+\frac {\left (2 b^2 \sqrt {d+c^2 d x^2}\right ) \text {Subst}\left (\int \frac {\text {Li}_2(-x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {\left (2 b^2 \sqrt {d+c^2 d x^2}\right ) \text {Subst}\left (\int \frac {\text {Li}_2(x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}\\ &=2 b^2 \sqrt {d+c^2 d x^2}-\frac {2 a b c x \sqrt {d+c^2 d x^2}}{\sqrt {1+c^2 x^2}}-\frac {2 b^2 c x \sqrt {d+c^2 d x^2} \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}}+\sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2-\frac {2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {2 b \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}+\frac {2 b \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right ) \text {Li}_2\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}+\frac {2 b^2 \sqrt {d+c^2 d x^2} \text {Li}_3\left (-e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}-\frac {2 b^2 \sqrt {d+c^2 d x^2} \text {Li}_3\left (e^{\sinh ^{-1}(c x)}\right )}{\sqrt {1+c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.79, size = 352, normalized size = 1.04 \begin {gather*} a^2 \sqrt {d+c^2 d x^2}+a^2 \sqrt {d} \log (c x)-a^2 \sqrt {d} \log \left (d+\sqrt {d} \sqrt {d+c^2 d x^2}\right )+\frac {2 a b \sqrt {d+c^2 d x^2} \left (-c x+\sqrt {1+c^2 x^2} \sinh ^{-1}(c x)+\sinh ^{-1}(c x) \log \left (1-e^{-\sinh ^{-1}(c x)}\right )-\sinh ^{-1}(c x) \log \left (1+e^{-\sinh ^{-1}(c x)}\right )+\text {PolyLog}\left (2,-e^{-\sinh ^{-1}(c x)}\right )-\text {PolyLog}\left (2,e^{-\sinh ^{-1}(c x)}\right )\right )}{\sqrt {1+c^2 x^2}}+\frac {b^2 \sqrt {d+c^2 d x^2} \left (2 \sqrt {1+c^2 x^2}-2 c x \sinh ^{-1}(c x)+\sqrt {1+c^2 x^2} \sinh ^{-1}(c x)^2+\sinh ^{-1}(c x)^2 \log \left (1-e^{-\sinh ^{-1}(c x)}\right )-\sinh ^{-1}(c x)^2 \log \left (1+e^{-\sinh ^{-1}(c x)}\right )+2 \sinh ^{-1}(c x) \text {PolyLog}\left (2,-e^{-\sinh ^{-1}(c x)}\right )-2 \sinh ^{-1}(c x) \text {PolyLog}\left (2,e^{-\sinh ^{-1}(c x)}\right )+2 \text {PolyLog}\left (3,-e^{-\sinh ^{-1}(c x)}\right )-2 \text {PolyLog}\left (3,e^{-\sinh ^{-1}(c x)}\right )\right )}{\sqrt {1+c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x])^2)/x,x]

[Out]

a^2*Sqrt[d + c^2*d*x^2] + a^2*Sqrt[d]*Log[c*x] - a^2*Sqrt[d]*Log[d + Sqrt[d]*Sqrt[d + c^2*d*x^2]] + (2*a*b*Sqr
t[d + c^2*d*x^2]*(-(c*x) + Sqrt[1 + c^2*x^2]*ArcSinh[c*x] + ArcSinh[c*x]*Log[1 - E^(-ArcSinh[c*x])] - ArcSinh[
c*x]*Log[1 + E^(-ArcSinh[c*x])] + PolyLog[2, -E^(-ArcSinh[c*x])] - PolyLog[2, E^(-ArcSinh[c*x])]))/Sqrt[1 + c^
2*x^2] + (b^2*Sqrt[d + c^2*d*x^2]*(2*Sqrt[1 + c^2*x^2] - 2*c*x*ArcSinh[c*x] + Sqrt[1 + c^2*x^2]*ArcSinh[c*x]^2
 + ArcSinh[c*x]^2*Log[1 - E^(-ArcSinh[c*x])] - ArcSinh[c*x]^2*Log[1 + E^(-ArcSinh[c*x])] + 2*ArcSinh[c*x]*Poly
Log[2, -E^(-ArcSinh[c*x])] - 2*ArcSinh[c*x]*PolyLog[2, E^(-ArcSinh[c*x])] + 2*PolyLog[3, -E^(-ArcSinh[c*x])] -
 2*PolyLog[3, E^(-ArcSinh[c*x])]))/Sqrt[1 + c^2*x^2]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(822\) vs. \(2(353)=706\).
time = 2.00, size = 823, normalized size = 2.43

method result size
default \(-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {c^{2} d \,x^{2}+d}}{x}\right ) a^{2}+a^{2} \sqrt {c^{2} d \,x^{2}+d}+\frac {b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{2} x^{2} c^{2}}{c^{2} x^{2}+1}-\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) x c}{\sqrt {c^{2} x^{2}+1}}+\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, x^{2} c^{2}}{c^{2} x^{2}+1}+\frac {b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{2}}{c^{2} x^{2}+1}+\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}}{c^{2} x^{2}+1}-\frac {b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{2} \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}}-\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) \polylog \left (2, -c x -\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}}+\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \polylog \left (3, -c x -\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}}+\frac {b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )^{2} \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}}+\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) \polylog \left (2, c x +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}}-\frac {2 b^{2} \sqrt {d \left (c^{2} x^{2}+1\right )}\, \polylog \left (3, c x +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}}+\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) x^{2} c^{2}}{c^{2} x^{2}+1}-\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, x c}{\sqrt {c^{2} x^{2}+1}}+\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right )}{c^{2} x^{2}+1}+\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) \ln \left (1-c x -\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}}+\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \polylog \left (2, c x +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}}-\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \arcsinh \left (c x \right ) \ln \left (1+c x +\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}}-\frac {2 a b \sqrt {d \left (c^{2} x^{2}+1\right )}\, \polylog \left (2, -c x -\sqrt {c^{2} x^{2}+1}\right )}{\sqrt {c^{2} x^{2}+1}}\) \(823\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2)/x,x,method=_RETURNVERBOSE)

[Out]

-d^(1/2)*ln((2*d+2*d^(1/2)*(c^2*d*x^2+d)^(1/2))/x)*a^2+a^2*(c^2*d*x^2+d)^(1/2)+b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*
x^2+1)*arcsinh(c*x)^2*x^2*c^2-2*b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)*x*c+2*b^2*(d*(c^2*x^2
+1))^(1/2)/(c^2*x^2+1)*x^2*c^2+b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)*arcsinh(c*x)^2+2*b^2*(d*(c^2*x^2+1))^(1/2
)/(c^2*x^2+1)-b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)^2*ln(1+c*x+(c^2*x^2+1)^(1/2))-2*b^2*(d*
(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)*polylog(2,-c*x-(c^2*x^2+1)^(1/2))+2*b^2*(d*(c^2*x^2+1))^(1/2
)/(c^2*x^2+1)^(1/2)*polylog(3,-c*x-(c^2*x^2+1)^(1/2))+b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)
^2*ln(1-c*x-(c^2*x^2+1)^(1/2))+2*b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)*polylog(2,c*x+(c^2*x
^2+1)^(1/2))-2*b^2*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*polylog(3,c*x+(c^2*x^2+1)^(1/2))+2*a*b*(d*(c^2*x^2+
1))^(1/2)/(c^2*x^2+1)*arcsinh(c*x)*x^2*c^2-2*a*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*x*c+2*a*b*(d*(c^2*x^2
+1))^(1/2)/(c^2*x^2+1)*arcsinh(c*x)+2*a*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)*ln(1-c*x-(c^2*x
^2+1)^(1/2))+2*a*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)*polylog(2,c*x+(c^2*x^2+1)^(1/2))-2*a*b*(d*(c^2*x^2+
1))^(1/2)/(c^2*x^2+1)^(1/2)*arcsinh(c*x)*ln(1+c*x+(c^2*x^2+1)^(1/2))-2*a*b*(d*(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(
1/2)*polylog(2,-c*x-(c^2*x^2+1)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2)/x,x, algorithm="maxima")

[Out]

-(sqrt(d)*arcsinh(1/(c*abs(x))) - sqrt(c^2*d*x^2 + d))*a^2 + integrate(sqrt(c^2*d*x^2 + d)*b^2*log(c*x + sqrt(
c^2*x^2 + 1))^2/x + 2*sqrt(c^2*d*x^2 + d)*a*b*log(c*x + sqrt(c^2*x^2 + 1))/x, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2)/x,x, algorithm="fricas")

[Out]

integral(sqrt(c^2*d*x^2 + d)*(b^2*arcsinh(c*x)^2 + 2*a*b*arcsinh(c*x) + a^2)/x, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {d \left (c^{2} x^{2} + 1\right )} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{2}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))**2*(c**2*d*x**2+d)**(1/2)/x,x)

[Out]

Integral(sqrt(d*(c**2*x**2 + 1))*(a + b*asinh(c*x))**2/x, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2*(c^2*d*x^2+d)^(1/2)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2\,\sqrt {d\,c^2\,x^2+d}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*asinh(c*x))^2*(d + c^2*d*x^2)^(1/2))/x,x)

[Out]

int(((a + b*asinh(c*x))^2*(d + c^2*d*x^2)^(1/2))/x, x)

________________________________________________________________________________________